Wednesday, August 27, 2014

CCNA Tutorial Part-2 (Network Cable)

Network Cable:

Network cables are used to connect one network device to other network devices or to connect two or more computers to share printer, scanner etc. 

Types of Network Cable
Different types of network cables
Coaxial cable
Twisted Pair cable
Optical fiber cable
Patch cable
Internet Crossover cable

Coaxial cable:
For used local area network. Different types of Coaxial cable:50 ohm(RG-8, RG-11, RG-58) , 70 ohm(RG-89), 93 ohm(RG-62).
Price is cheap.



Twisted Pair cable:
Twisted pair cable 2 types.

Shielded Twisted Pair Cable:
Each pair covered by an additional copper braid jacket or foil wrapping. 
Data transfer speed: 500 Mbps



Unshielded Twisted Pair Cable:
It’s kind of copper telephone wiring.
Data transfer speed: 16 Mbps


Optical fiber cable:
It’s containing one or more optical fibers that are used to carry light.  It’s uses glass (or plastic) threads (fibers) to transmit data.
Price is high. Fiber optic cable is fast — faster than any of the alternatives available.











Tuesday, August 26, 2014

CCNA Tutorial Part-1 (What is Network?)

CCNA Tutorial 

Written By...Md. Kabir Hosen


What is Network?

When one computer linking with another computer or more than one computer and purpose of sharing data then we can say its called Network. For network we need minimum two computers.

Types of Network:
We have three types of Network:
1.      LAN
2.      MAN
3.      WAN

Local Area Network (LAN): A LAN connects network devices over a relatively short distance.
Example: lab, school, or building.
 Data Transfer Speed: 10 Mbps
Uses devices: Repeater, Hub, Network Interface

Metropolitan Area Network (MAN): MAN, consists of a computer network across an entire city, college campus or small region. A MAN is larger than a LAN, which is typically limited to a single building or site.
Data Transfer Speed: Gigabit per second
Uses devices: Router, switch, Microwave Antenna

WAN (Wide Area Network):  WAN, occupies a very large area, such as an entire country or the entire world. A WAN can contain multiple smaller networks, such as LANs or MANs. The Internet is the best-known example of a public WAN.

Data Transfer Speed:  56 Kbps to 1.5444 Mbps
Uses devices: Router, WAN switch, Modem

What is topology?
topology is the physical configuration of a network that determines how the network's computers are connected.
Physical  Topology
  •  Classification of physical Topology
    • Point-to-point
    • Bus
    •  Star
    •  Ring
    •  Mesh
    •  Tree


Sunday, August 24, 2014

Introduction to Linux for Beginners (Part 2)

Linux Distributions
Linux distribution is a collection of (usually open source) software on top of a Linux kernel. A distribution (or short, distro) can bundle server software, system management tools, documentation and many desktop applications in a central secure software repository. A distribution aims to provide a common look and feel, secure and easy software management and often a specific operational purpose. Here some popular distributions:
Red Hat
Ubuntu
Debian
Other CentOS, Oracle Enterprise Linux and Scientific Linux are based on Red Hat Enterprise Linux and share many of the same principles, directories and system administration technique. There are more than hundreds of other Linux distributions.

Which one you choose?
If you only would like to practice the Linux command line then install one CentOS server and/or one Ubuntu server (without graphical interface).

How to get Linux OS:

Maximum Linux distributions are free. So you can easily get Linux distribution from internet.

If you do not have access to a Linux computer at the moment, and if you are unable or unsure
about installing Linux on your computer, then you first install virtual machine (Virtualbox) is easy and safe or you can also use VMWare.


Friday, August 22, 2014

Multiple Regression Analysis in R “Favorite Fast-Food Prediction with Live Data”

 University of Applied Sciences, Frankfurt
Department of Computer Science & Engineering 
Md. Kabir Hosen
Idea: Forming a model equation with multiple Regression analysis on the observed data collected and the predicted value. Calculation of residual errors, scatter plot, descriptive statistics, mean, median, ratio and correlation in R.

Questionnaire:
1.     Respondent Name:  ………………………………………………….
2.      What is your age group?
i.                   Under 18
ii.                 18-26
iii.              27-35
iv.              36-others
3.     Living place ………………………………………………………….
4.     Gender
                               i.            Male
                             ii.            Female
                          iii.            Others………………………………………………………
5.     Occupation
                               i.            Student
                             ii.            Employee
                          iii.            others
6.     Your Favorite Fast Food?
                               i.            KFC
                             ii.            Mc Donald
                          iii.            Pizza Hut
                          iv.            Burger King
                             v.            Others………………………………………………………
7.     Price is
                               i.            Cheap
                             ii.            Average
                          iii.            Good
                          iv.            Outstanding


8.     Quality of Service
                                 i.            Good
                               ii.            Very good
                            iii.            Excellent
                            iv.            Others……………………………………………………..
9.     Test of food
                               i.            Good
                             ii.            Very good
                          iii.            Excellent
                          iv.            Others………………………………………………………
10.                        How many times do you go to your fast food restaurant in per month?
                               i.            1 - 2
                             ii.            3-5
                          iii.            6-10
                          iv.            More than 10
11.                         Which one of the reasons you go to your restaurant?
i.                     Special occasion (birthday, holiday)
ii.                    Regular Meal
iii.                  Business Lunch
iv.                 Just for the food
12.                        Overall Satisfaction
                               i.            Good
                             ii.            Very good
                          iii.            Excellent
                          iv.            Others………………………………………………….


Response Variable:
 Response variable is “Favorite Fast Food”.
 Prediction:                      
We are going to predict the “Favorite Fast Food” according to the customer feedback data Ex. "Age", "Gender", "Occupation", "Price", "Quality of Service", "Taste of Food", "Monthly Restaurant Visit", "Reasons for Restaurant Visit" & “Satisfaction".
Aims of a Successful Guest Survey:
The survey will undertake to:
1. Measure overall customer satisfaction.
2. Learn about the customer.
3. Identify buying habits and dining patterns.
5. Find out why customers visit restaurant.
6. Learn what influences guest purchase decisions.
7. Learn what guests believe you do well and not so well.
8. Discover what we can do to improve operations.
9. Identify processes for change that will improve customer satisfaction.
10. How to increase customer loyalty.
11. Finally Measure which Fast Food we are going to launch.

  
“Favorite Fast Food Prediction with Live Data”
……………………………………………………………………………
Introduction:

A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is now modeled as a function of several explanatory variables. The function lm can be used to perform multiple linear regression in R and much of the syntax is the same as that used for fitting simple linear regression models. To perform multiple linear regression with p explanatory variables use the command:
>lm(response ~ explanatory_1 + explanatory_2 + … + explanatory_p)

Here the terms response and explanatory_i in the function should be replaced by the names of the response and explanatory variables, respectively, used in the analysis.

 Ex. Data was collected on 50 guest recently sold in the Frankfurt city. It consisted of the "Age" , "Gender", "Occupation", "Fav_FastFood", "Price", "Q_Service", "Taste_Food",    "Monthly_Visit", "Reasons_Visit" &  "Satisfaction".

The following program reads in the data.

>data1<-read.csv(file.choose(),header=T)  # Read data from Guest Feedback Excel CSV File
>data1

 Suppose we are only interested in working with a subset of the variables (e.g. “Fav_FastFood” , “Price”, and “Age”). It is possible (but not necessary) to construct a new data frame consisting solely of these values using the commands:

> myvars=c('Fav_FastFood','Age', 'Price')

> Guestdata=data1[myvars]
> names(Guestdata)
[1]     "Fav_FastFood" "Age"          "Price"      
> Guestdata
   Fav_FastFood   Age   Price
1             3                       3        2
2             2                      2        2
3             2                     2        2
4             2                     3        2
5             1                     2        2
6             3                     2        2
7             4                     2        2
………………………….
………………………..up to 50 reading

Before fitting our regression model we want to investigate how the variables are related to one another. We can do this graphically by constructing scatter plots of all pair-wise combinations of variables in the data frame. This can be done by typing:

Guestdata=c(”Fav_FastFood”,”Age”,”Price”)
>plot(Guestdata)



To fit a multiple linear regression model with “Fav_FastFood” as the response / dependent variable and “Age” and “Price” as the explanatory / independent variables, use the command:


> Guestdata=(lm(Fav_FastFood~Age+Price))             
> Guestdata
Call:
lm(formula = Fav_FastFood ~ Age + Price)
Coefficients:
(Intercept)          Age        Price 
     4.5163      -0.9469       0.2334 
This output indicates that the fitted value is given by, Y^=4.5163 + -0.9469x1 + 0.2334x2

Inference in the multiple regression setting is typically performed in a number of steps. We begin by testing whether the explanatory variables collectively have an effect on the response variable, i.e.
H0: β12=….βp=0

If we can reject this hypothesis, we continue by testing whether the individual regression coefficients are significant while controlling for the other variables in the model.
We can access the results of each test by typing:
> Guestdata=(lm(Fav_FastFood~Age+Price))                # Reduced Model
> summary(Guestdata)
Call:
lm(formula = Fav_FastFood ~ Age + Price)
Residuals:
    Min        1Q              Median      3Q                        Max
-2.3226       -1.0892      -0.1158        1.4459        2.0910
Coefficients:
                             Estimate     Std. Error  t value       Pr(>|t|)   
(Intercept)                      4.5163         0.9586      4.711          2.22e-05 ***
Age                       -0.9469         0.3353     -2.824          0.00694 **
Price                      0.2334         0.2822       0.827          0.41237   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.373 on 47 degrees of freedom
Multiple R-squared:  0.1478,    Adjusted R-squared:  0.1115
F-statistic: 4.075 on 2 and 47 DF, p-value: 0.02333

The output shows that F = 4.075 (p < 0.02333), indicating that we should clearly accept the null hypothesis that the variable Age collectively have effect on Fav_FastFood. But Price has no effect on Fav_FastFood (response variable).In addition, the output also shows that R2= 0.1478 and R2 adjusted = 0.1115.

Testing a subset of variables using a partial F-test
Sometimes we are interested in simultaneously testing whether a certain subset of the coefficients are equal to 0 (e.g. 3 = 4 = 0). We can do this using a partial F-test. This test involves comparing the SSE from a reduced model (excluding the parameters we hypothesis are equal to zero) with the SSE from the full model (including all of the parameters).
In R we can perform partial F-tests by fitting both the reduced and full models separately and thereafter comparing them using the anova function.

Ex. Suppose we include the variables “Age”, “Price”"Gender", "Occupation", "Q_Service", "Taste_Food",  "Monthly_Visit", "Reasons_Visit" & "Satisfaction" in our model and are interested in testing whether the "Gender", "Occupation", "Q_Service", "Taste_Food",  "Monthly_Visit", “Price”, "Reasons_Visit" & "Satisfaction" are not significant after taking “Age” into consideration.

# Reduced Model
> reduced=(lm(Fav_FastFood~Price+Age))
> reduced
Call:
lm(formula = Fav_FastFood ~ Price + Age)
Coefficients:
(Intercept)        Price          Age 
     4.5163       0.2334      -0.9469    
> summary(reduced)
Call:
lm(formula = Fav_FastFood ~ Age + Price)
Residuals:
    Min      1Q  Median      3Q     Max
-2.3226 -1.0892 -0.1158  1.4459  2.0910
Coefficients:
            Estimate   Std. Error t value                  Pr(>|t|)   
(Intercept)   4.5163     0.9586           4.711                             2.22e-05 ***
Age          -0.9469     0.3353     -2.824                  0.00694 **
Price         0.2334     0.2822       0.827                   0.41237   
---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.373 on 47 degrees of freedom
Multiple R-squared:  0.1478,    Adjusted R-squared:  0.1115
F-statistic: 4.075 on 2 and 47 DF,  p-value: 0.02333
 # Full Model
> attach(full)
>full=(lm(Fav_FastFood~Price+Age+Gender+Occupation+Q_Service+Taste_Food+Monthly_Visit+Reasons_Visit+Satisfaction))
> full
Call:
lm(formula = Fav_FastFood ~ Price + Age + Gender + Occupation +
    Price + Q_Service + Taste_Food + Monthly_Visit + Reasons_Visit +
    Satisfaction)
Coefficients:
  (Intercept)          Price            Age         Gender                   Occupation      Q_Service    
      5.14578        0.17980       -1.10841       -0.24159       -0.57401       -0.13015
Taste_Food    Monthly_Visit       Reasons_Visit    Satisfaction 
       0.09593         -0.25246                          0.22270         0.29820 

> summary(full)
Call:
lm(formula = Fav_FastFood ~ Price + Age + Gender + Occupation +
    Price + Q_Service + Taste_Food + Monthly_Visit + Reasons_Visit +
    Satisfaction)

Residuals:
     Min         1Q             Median       3Q              Max
-2.31351     -1.12243     -0.06685      0.87608       2.15450
Coefficients:
              Estimate                    Std. Error   t value         Pr(>|t|)  
(Intercept)    5.14578    2.97431   1.730               0.09133 .
Price          0.17980     0.30538      0.589              0.55933  
Age           -1.10841    0.38296     -2.894              0.00613 **
Gender        -0.24159    0.41801    -0.578            0.56654  
Occupation    -0.57401    1.71982   -0.334                    0.74030  
Q_Service     -0.13015    0.24642   -0.528           0.60029  
Taste_Food     0.09593    0.29604   0.324           0.74760  
Monthly_Visit -0.25246    0.36233   -0.697                  0.48997  
Reasons_Visit  0.22270    0.27519    0.809                   0.42314  
Satisfaction   0.29820    0.29773    1.002             0.32257  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.437 on 40 degrees of freedom
Multiple R-squared:  0.2054,    Adjusted R-squared:  0.02659
F-statistic: 1.149 on 9 and 40 DF, p-value: 0.3531


#Compare the Models
> anova(reduced, full)                               
Analysis of Variance Table
Model 1: Fav_FastFood ~ Price + Age
Model 2: Fav_FastFood ~ Price + Age + Gender + Occupation + Price + Q_Service + Taste_Food + Monthly_Visit + Reasons_Visit + Satisfaction
  Res.Df    RSS     Df               Sum of Sq      F              Pr(>F)
1     47 88.562                          
2     40 82.577       7                  5.9849      0.4142        0.8878
The output shows the results of the partial F-test. Since F= 0.4142 (p-value=0.8878) we can reject the null hypothesis (3 = 4 = 0) at the 5% level of significance. It appears that the variables "Gender", "Occupation",”Price” "Q_Service", "Taste_Food",  "Monthly_Visit", "Reasons_Visit" & "Satisfaction" do contribute significant information to the “Favorite Fast Food” once the variable “Age” has not taken into consideration.

Confidence and Prediction Intervals
We often use our regression models to estimate the mean response or predict future values of the response variable for certain values of the response variables. The function predict() can be used to make both confidence intervals for the mean response and prediction intervals. To make confidence intervals for the mean response use the option interval=”confidence”. To make a prediction interval use the option interval=”prediction”. By default this makes 95% confidence and prediction intervals. If you instead want to make a 99% confidence or prediction interval use the option level=0.99.

Ex. Obtain a 95% confidence interval for the mean Fav_FastFood of Age whose level is 2 and Price level is 2).

> reduced=(lm(Fav_FastFood~Price+Age))

> predict(reduced,data.frame(Age=2,Price=2),interval="confidence")
           fit                 lwr                      upr
1        3.08924      2.615599             3.56288
A 95% confidence interval is given by (2.615599, 3.56288)

Ex. Obtain a 95% prediction interval for the mean Fav_FastFood of Age whose level is 2 and Price level is 2
> predict(reduced,data.frame(Age=2,Price=2),interval="prediction")
      fit                    lwr                           upr
1   3.08924          0.287413                5.891067

A 95% prediction interval is given by (0.287413, 5.891067).
Note that this is quite a bit wider than the confidence interval, indicating that the variation about the mean is fairly large.
Conclusion:
After consideration of all scenarios we formulate our multiple regression model equation and we observed that only “Age” (independent variable) has the significant impact on choosing the Favorite Fast Food (response variable).

More: Contact: kabircse115@gmail.com